14.1/14.3 Intro to Multivariable Functions and Partial Derivatives

Def'n: A function, *f*, of two variables is a rule that assigns a number for each input (x,y).

$$z = f(x, y).$$

In 3D:

(x,y) is the location on the xy-plane z = f(x,y) = height above that point.

We sometimes write $f: \mathbb{R}^2 \to \mathbb{R}$.

The set of allowable inputs is called the **domain**. Any question that asks "find the domain" is simply asking you if you know your functions well enough to understand when they are not defined.

Appears in	Restriction
Function	
\sqrt{BLAH}	BLAH ≥ 0
STUFF/BLAH	BLAH ≠ 0
In(BLAH)	BLAH > 0
sin ⁻¹ (BLAH)	$-1 \leq BLAH \leq 1$
and other trig	

Examples: Sketch the domain of (1) $f(x, y) = \ln(y - x)$

(2)
$$g(x, y) = \sqrt{y + x^2}$$

Visualizing Surfaces The basic tool for graphing surfaces is **traces**. We typically look at traces given by fixed values of z (height) first.

We call these traces **level curves**, because each curve represents all the points at the same height (level) on the surface. A collection of level curves is called a **contour map** (or **elevation map**). Contour Map (Elevation Map) of Mt. St. Helens from 1979 (before it erupted):

Examples:

1. Graph the level curves for

$$z = -2, -1, 0, 1, and 2$$
 for
 $z = f(x, y) = y - x$

2.Graph level curves for z = f(x, y) = sin(x) - y

Graph of z = sin(x) - y

3. Graph level curves for

$$z = f(x, y) = \frac{1}{1 + x^2 + y^2}$$

Level Curves for

$$z = f(x, y) = \frac{1}{1 + x^2 + y^2}$$

at z = 1/10, 2/10, ..., 9/10, 10/10

Graph of
$$z = f(x, y) = \frac{1}{1 + x^2 + y^2}$$

