14.1/14.3 Intro to Multivariable Functions and Partial Derivatives

Def'n: A function, f, of two variables is a rule that assigns a number for each input (x, y).

$$
z=f(x, y)
$$

In 3D:
(x, y) is the location on the $x y$-plane $z=f(x, y)=$ height above that point.

We sometimes write $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The set of allowable inputs is called the domain. Any question that asks "find the domain" is simply asking you if you know your functions well enough to understand when they are not defined.

Appears in Function	Restriction
$\sqrt{B L A H}$	$\mathrm{BLAH} \geq 0$
$\mathrm{STUFF} / \mathrm{BLAH}$	$\mathrm{BLAH} \neq 0$
$\operatorname{In}(\mathrm{BLAH})$	$\mathrm{BLAH}>0$
$\sin ^{-1}(\mathrm{BLAH})$	$-1 \leq \mathrm{BLAH} \leq 1$
and other trig..	

Examples:

Sketch the domain of
(1) $f(x, y)=\ln (y-x)$

(2) $g(x, y)=\sqrt{y+x^{2}}$

Visualizing Surfaces
The basic tool for graphing surfaces is traces. We typically look at traces given by fixed values of Z (height) first.

We call these traces level curves, because each curve represents all the points at the same height (level) on the surface. A collection of level curves is called a contour map (or elevation map).

Contour Map (Elevation Map) of Mt. St. Helens from 1979 (before it erupted):

Examples:

1. Graph the level curves for

$$
\begin{aligned}
& z=-2,-1,0,1, \text { and } 2 \text { for } \\
& \quad z=f(x, y)=y-x
\end{aligned}
$$

2. Graph level curves for

$$
z=f(x, y)=\sin (x)-y
$$

Graph of $z=\sin (x)-y$

3.Graph level curves for

$$
z=f(x, y)=\frac{1}{1+x^{2}+y^{2}}
$$

Level Curves for

$$
\begin{array}{r}
z=f(x, y)=\frac{1}{1+x^{2}+y^{2}} \\
\text { at } z=1 / 10,2 / 10, \ldots, 9 / 10,10 / 10
\end{array}
$$

Graph of $z=f(x, y)=\frac{1}{1+x^{2}+y^{2}}$

